HIGH PRECISION B_ρ MEASUREMENTS OF LIGHT URANIUM REACTION PRODUCTS

M. V. Ricciardi

F. Ameil1, P. Armbruster1, J. Benlliure2, M. Bernas3, A. Boudard4, S. Czajkowski5, T. Enqvist1, R. Legrain4, S. Leray4, B. Mustapha3, M. Pravikoff5, F. Rejmund1, K. -H. Schmidt1, C. Stephan4, L. Tassan-Got3, C. Volant4.

(1) GSI Darmstadt
(2) Univ. Santiago de Compostela
(3) IPN Orsay
(4) CEA Saclay
(5) CEN Bordeaux-Gradignan
- identification of Z from IC: $\Delta E \propto Z^2$

- identification of A/Z from time and position:

$$\frac{A}{Z} = \frac{1}{3.1} \frac{B_\rho}{\beta \gamma}$$

with $[B_\rho] = Tm$ \hspace{1cm} $\beta = \frac{v}{c}$ \hspace{1cm} with \hspace{1cm} $v = \frac{s}{ToF}$

large flight path \rightarrow good mass resolution

- once nuclides are identified (i.e. A and Z are integer numbers), velocity is calculated from B_ρ:

$$\beta \gamma = \frac{B_\rho}{3.1} \frac{Z}{A}$$

very precise evaluation!
FEATURES OF FRS

- high resolution in A, Z and velocity
- limited momentum acceptance: needs a combination of several $B\rho$ settings to cover all A/Z and velocity
- limited angular acceptance: only a part of the real production is measured.

OUR DATA: ^{238}U (1 A GeV) / $^{2}H_2$ (+ Ti)

Preliminary analysis of light masses:

$^{2}H_2$ + Ti \rightarrow 11 settings (from $A/Z = 1.8$ to $A/Z = 2.9$)
Ti (dummy) \rightarrow 6 settings (from $A/Z = 1.8$ to $A/Z = 2.9$)
Charge deduced from I.C.

Counts

Z

Z vs A/Z

A/Z

Z
Combining appropriately all the setting together finally we have the velocity spectrum of every isotope.

All isotopes of one element: potassium

What do we learn from these pictures?

We observe three bumps in velocity, but the FRS transmits only a small part in angle…

All the pictures refer to the longitudinal component of the velocity of transmitted fragments in the beam center-of-mass frame.
- evidence of FISSION
- evidence of FRAGMENTATION
- evidence of a 3rd process (MULTIFRAGMENTATION?)
FISSION

1) very asymmetric fission can produce very light nuclei (\(Z = 10\) (or less?))

2) velocity of fission products: it is consistent to what expected from theory (\(\rightarrow\) we can deduce the partner)

Lines: calculated velocities of fission fragments from the compound nucleus \(Z = 84, A = 214\)

3) isotopic distribution shifted towards the neutron rich side
The production of light isotopes (10<A<40) from 600 MeV proton on 238U has been also observed at ISOLDE (*) (CERN).

ISOLDE: 0.6 GeV $p \rightarrow ^{238}$U
- no velocity measurements \rightarrow no knowledge of the reaction mechanism
- production of very neutron-rich nuclei

GSI: 1 A GeV 238U \rightarrow H$_2$
- precise velocity measurements \rightarrow fission is the reaction mechanism
- production shifted to the neutron-rich side

(*) H.-J. Kluge, ISOLDE user’s guide, CERN 86-05 (1986)
FRAGMENTATION

1) velocity spread around zero

2) isotopic distribution shifted towards the neutron-deficient side

3) velocity increases as the mass of the fragment decreases (!)
CONCLUSIONS

THE FRS

1) high resolution in \(Z \) and \(A \) \(\rightarrow \) isotope identification

2) precise evaluation of velocity \(\rightarrow \) kinematic properties of products

THE EXPERIMENT

Preliminary analysis of \(^{238}\text{U} \) 1A GeV \(\rightarrow \) H2 + Ti shows that different processes occur.

FISSION of \(^{238}\text{U} \) in H2

Fission is a very important method for the production of very light neutron-rich isotopes (down to neon)

FRAGMENTATION of \(^{238}\text{U} \) in Ti

The acceleration of light nuclei can give new information on the dynamics of the fragmentation process