1st meeting
of the CLUSTER for BASIC STUDIES FOR TRANSmutation

1st BASTRA meeting

DECEMBER 5, 2001
CERN, GENEVA, SWITZERLAND

VOLUME I
First meeting of the Basic Studies for Transmutation
BASTRA Cluster
HINDAS / n_TOF-ND-ADS / MUSE / ISTC / OECD-NEA

Date: **Wednesday 5 December 2001**;
Place: CERN, Geneva, Switzerland
BUILDING: 864 (Lab 2; Prevessin/F)
Chairman: V. Bhatnagar; Co-chairman: P. Pavlopoulos

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>Welcome, Introduction and Approval of the agenda</td>
<td>V. Bhatnagar</td>
</tr>
<tr>
<td>08:50</td>
<td>Presentation of the HINDAS Project (10”)</td>
<td>J.-P. Meulders</td>
</tr>
<tr>
<td></td>
<td>Experimental program from 20MeV to 200MeV (20”)</td>
<td>N. Olsson</td>
</tr>
<tr>
<td></td>
<td>Experimental program from 200 MeV to 2 GeV (20”)</td>
<td>K.H. Schmidt</td>
</tr>
<tr>
<td></td>
<td>Theoretical program (20”)</td>
<td>J. Cugnon</td>
</tr>
<tr>
<td>10:05</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>10:25</td>
<td>Presentation of the n_TOF-ND-ADS Project (15”)</td>
<td>P. Pavlopoulos</td>
</tr>
<tr>
<td></td>
<td>The CERN Neutron TOF Beam (15”)</td>
<td>A. Zanini</td>
</tr>
<tr>
<td></td>
<td>Experimental Set-up & Preliminary Results (20”)</td>
<td>E. Gonzalez</td>
</tr>
<tr>
<td></td>
<td>Required Precision and Priority List of Elements (10”)</td>
<td>Y. Kadi</td>
</tr>
<tr>
<td></td>
<td>ND Evaluation & Modelling (15”)</td>
<td>H. Leeb</td>
</tr>
<tr>
<td>11:40</td>
<td>Presentation of the MUSE Project</td>
<td>R. Soule + W. Gudowski</td>
</tr>
<tr>
<td>12:15</td>
<td>Presentation from the Nuclear Data bank NEA/OCDE (Paris)</td>
<td>M. Kellett</td>
</tr>
<tr>
<td></td>
<td>The Route from Experiment to Evaluation</td>
<td></td>
</tr>
<tr>
<td>12:50</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>Presentation of the ISTC projects on Nuclear Data</td>
<td>W. Furman</td>
</tr>
<tr>
<td>14:15</td>
<td>#B70: Transmutation of LLFP and MA in a Sub-critical Assembly Driven by a Neutron Generator</td>
<td>S. Chigrinov</td>
</tr>
<tr>
<td></td>
<td>#1309: p- and n-induced X-sections of Pb and Neighbouring Nuclei in 20-200 MeV Region</td>
<td>N. Olsson + S. Yavshits</td>
</tr>
<tr>
<td></td>
<td>#1372: Radiochemical and Activation Analysis of LL Nuclear Waste Transmutation in FR and Accelerators</td>
<td>Y. Shubin</td>
</tr>
<tr>
<td></td>
<td>#1971 : n-Induced Fission X-section of Pu240, AM243 and W in the Range of 1-200 MeV</td>
<td>A. Laptev</td>
</tr>
<tr>
<td></td>
<td>#2002 : Yields of Residual Products in Thin Pb and Bi Targets by 40-2600 MeV Protons</td>
<td>V. Batyaev</td>
</tr>
<tr>
<td>15:30</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>15:50</td>
<td>Discussion on the needs of nuclear data studies for ADS and coverage by FP5 and other projects</td>
<td>Animated by P. Pavlopoulos</td>
</tr>
<tr>
<td>17:30</td>
<td>Actions to be taken</td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>Close of the meeting</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Project</td>
<td>Affiliation - Address</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>AIT ABDERRAHIM Hamid</td>
<td>MUSE, ADOPT</td>
<td>SCK-CEN, Boeretang 200 B-2400 Mol</td>
</tr>
<tr>
<td>ANDRIAMONJE Samuel</td>
<td>n_TOF-ND-ADS</td>
<td>CEA Saclay DSM/DAPNIA/SPhN F-91191 Gif-sur-Yvette</td>
</tr>
<tr>
<td>BATYAEV Vyacheslav</td>
<td>ISTC - 2002</td>
<td>Laboratory of Fundamental Nuclear Physics Research Institute for Theoretical & Experimental Physics B.Cheremushkinskaya 25, 117218 Moscow, Russia</td>
</tr>
<tr>
<td>BAUMANN Paule</td>
<td>n_TOF-ND-ADS</td>
<td>IReS-IN2P3 Strasbourg-France</td>
</tr>
<tr>
<td>BECVAR Frantisek</td>
<td>n_TOF-ND-ADS</td>
<td>Charles University Prague Vholesovickach 2 CZ-Praque 8</td>
</tr>
<tr>
<td>BERTHIER Bernard</td>
<td>n_TOF-ND-ADS</td>
<td>IPN-IN2P3 Orsay Cedex</td>
</tr>
<tr>
<td>BHATNAGAR Ved</td>
<td></td>
<td>European Commission DG RTD Office MO75 5/51 B-1049 Brussels</td>
</tr>
<tr>
<td>BLOMGREN Jan</td>
<td>HINDAS</td>
<td>Uppsala University Dept of Neutron Research PO Box 525 Uppsala 75120 Sweden</td>
</tr>
<tr>
<td>BORCEA Catalin</td>
<td>n_TOF-ND-ADS</td>
<td>CERN SLEET CH-1211 Geneva 23</td>
</tr>
<tr>
<td>BROEDERS Cornelis</td>
<td>MUSE + ISTC B70, 1309, 1372, 2002</td>
<td>FZK Postfach 3640 D-76021 Karlsruhe</td>
</tr>
<tr>
<td>CALVINO Francisco</td>
<td>n_TOF-ND-ADS</td>
<td>Nuclear Engineering, ETSEIB-UPC Diagonal 547 E-08028 Barcelona</td>
</tr>
<tr>
<td>CENNINI Paolo</td>
<td>n_TOF-ND-ADS</td>
<td>CERN CH-1211 Geneva 23</td>
</tr>
<tr>
<td>CHIGRINOV Sergey</td>
<td>ISTC - B 070</td>
<td>Scientific & Technical Centre “Sosny” NAS Minsk-Sosny, 220 109 Belarus</td>
</tr>
<tr>
<td>COLOonna Nicola</td>
<td>n_TOF-ND-ADS</td>
<td>INFN Bari Bari, Italy</td>
</tr>
<tr>
<td>CUGNON Joseph</td>
<td>HINDAS</td>
<td>University of Liége Institute of Physics B.5 Allée du 6 Août 17 B-4000 Sart Tilman, par Liège 1</td>
</tr>
<tr>
<td>DAHLFORS Marcus</td>
<td>n_TOF-ND-ADS</td>
<td>CERN ZO 3000 CH-1211 Geneva</td>
</tr>
<tr>
<td>DHONDt Pierre</td>
<td>ADOPT</td>
<td>SCK-CEN, Boeretang 200 B-2400 Mol</td>
</tr>
<tr>
<td>DURAN Ignacio</td>
<td>n_TOF-ND-ADS</td>
<td>Santiago de Compostela University E-15706 Santiago de Compostela</td>
</tr>
<tr>
<td>FURMAN Walter</td>
<td>n_TOF-ND-ADS</td>
<td>JINR 141980 Dubna, Moscow Region Russia</td>
</tr>
<tr>
<td>GONZALEZ-ROMERO Enrique</td>
<td>n_TOF-ND-ADS</td>
<td>CIEMAT Anda Complutense, 22 E-28040 Madrid</td>
</tr>
<tr>
<td>GUDOWSKI Waclaw</td>
<td>MUSE, ADOPT</td>
<td>KTH Stockholm Royal Institute of Technology S-106 91 Stockholm</td>
</tr>
<tr>
<td>Name</td>
<td>Project</td>
<td>Affiliation - Address</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>AIT ABDERRAHIM Hamid</td>
<td>MUSE, ADOPT</td>
<td>SCK-CEN Boeretang 200 B-2400 Mol</td>
</tr>
<tr>
<td>GUNSING Frank</td>
<td>n_TOF-ND-ADS</td>
<td>CEA Saclay DSM/DAPNIA/SPhN F-911191 Gif-sur-Yvette</td>
</tr>
<tr>
<td>HADDAD Ferid</td>
<td>HINDAS</td>
<td>Subatech B.P. 20722 La Chanterie, rue A. Kastler F-44307 Nantes</td>
</tr>
<tr>
<td>HEIL Michael</td>
<td>n_TOF-ND-ADS</td>
<td>FZK H. von Helmholtz Platz 1 D-76344 Eggenstein</td>
</tr>
<tr>
<td>HUGON Michel</td>
<td></td>
<td>European Commission DG RTD Office MO75 5/55 B-1049 Brussels</td>
</tr>
<tr>
<td>KADI Yacine</td>
<td>n_TOF-ND-ADS</td>
<td>CERN SL/EET CH-1211 Geneva 23</td>
</tr>
<tr>
<td>KAPPELER Franz</td>
<td>n_TOF-ND-ADS</td>
<td>FZK, IK D-76021 Karlsruhe</td>
</tr>
<tr>
<td>KELLETT Mark</td>
<td>NEA</td>
<td>OECD Nuclear Energy Agency 12, bd. Des Iles F-92130 Issy-les-Moulineaux</td>
</tr>
<tr>
<td>LACOSTE Véronique</td>
<td>n_TOF-ND-ADS</td>
<td>CERN Z.O. 3000 CH-1211 Geneva 23</td>
</tr>
<tr>
<td>LAPTEV Alexander</td>
<td>ISTC 1971</td>
<td>Petersburg Nuclear Phys. Institute Gaolchina, Leningrad Region 188 300 Russia</td>
</tr>
<tr>
<td>LE BRUN Christian</td>
<td>MUSE</td>
<td>ISN Grenoble 53, avenue des Martyrs F-39026 Grenoble</td>
</tr>
<tr>
<td>LEEB Helmut</td>
<td>n_TOF-ND-ADS</td>
<td>Atominstitut d.Österr.Universitäten Technische Universität Wien Wiedner Hauptstrasse 8-10 A-1040 Wien</td>
</tr>
<tr>
<td>MENGONI Alberto</td>
<td>n_TOF-ND-ADS</td>
<td>ENEA Applied Physics Div. V. Don Fiammelli, 2 I-40129 Bologna</td>
</tr>
<tr>
<td>MEULDERS Jean-Pierre</td>
<td>HINDAS</td>
<td>Université Catholique de Louvain Institut de Physique Nucléaire Chemin du Cyclotron, 2 B-1348 Louvain-la-Neuve</td>
</tr>
<tr>
<td>MICHEL Rolf</td>
<td>HINDAS</td>
<td>Universität Hannover Zentrum für Strahlenschutz und Radiologie Am Kleinen Felde 30 D-30167 Hannover</td>
</tr>
<tr>
<td>OLSSON Nils</td>
<td>HINDAS</td>
<td>Uppsala University Dept of Neutron Research PO Box 525 Uppsala 75120 Sweden</td>
</tr>
<tr>
<td>PANCIN Julien</td>
<td>n_TOF-ND-ADS</td>
<td>CEA - CERN CH-1211 Geneva 23</td>
</tr>
<tr>
<td>PARADELA Carlos</td>
<td>n_TOF-ND-ADS</td>
<td>Santiago de Compostela University Facultad de fisica E-15706 Santiago de Compostela</td>
</tr>
<tr>
<td>PAVLOPOULOS Panagiotis</td>
<td>n_TOF-ND-ADS</td>
<td>Univ. of BASLE and CERN CH-1211 Geneva 23</td>
</tr>
<tr>
<td>PLAG Ralf</td>
<td>n_TOF-ND-ADS</td>
<td>FZK H. von Helmholtz Platz 1 D-76344 Eggenstein</td>
</tr>
<tr>
<td>RAPP Wolfgang</td>
<td>n_TOF-ND-ADS</td>
<td>FZK H. von Helmholtz Platz 1 D-76344 Eggenstein</td>
</tr>
<tr>
<td>REIFARTH René</td>
<td>n_TOF-ND-ADS</td>
<td>FZK H. von Helmholtz Platz 1 D-76344 Eggenstein</td>
</tr>
<tr>
<td>Name</td>
<td>Project</td>
<td>Affiliation - Address</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>AIT ABDERRAHIM</td>
<td>MUSE, ADOPT</td>
<td>SCK-CEN, Boeretang 200 B-2400 Mol</td>
</tr>
<tr>
<td>RUDOLF Gérard</td>
<td>n_TOF-ND-ADS</td>
<td>IReS-IN2P4, Strasbourg-France</td>
</tr>
<tr>
<td>RULLHUSEN Peter</td>
<td>n_TOF-ND-ADS</td>
<td>IRMM Reliseweg, D-2440 Geel</td>
</tr>
<tr>
<td>SHUBIN Yuri</td>
<td>ISTC - 1372</td>
<td>State Scientific Centre of Russian Federation, Institute of Physics and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power Engineering (SSC RF -IPPE), Bondarenko Sq 1, Obninsk 249033 RF</td>
</tr>
<tr>
<td>SCHMIDT Karl-Heinz</td>
<td>HINDAS</td>
<td>GSI Planckstrasse 1 D-64291 Darmstadt</td>
</tr>
<tr>
<td>SLYPEN Isabelle</td>
<td>HINDAS</td>
<td>Université Catholique de Louvain Institut de Physique Nucléaire</td>
</tr>
<tr>
<td>SOULE Roland</td>
<td>MUSE</td>
<td>CEA Cadarache DER/SPEx/LPE Building 238 F-13108 St. Paul-az-Durance</td>
</tr>
<tr>
<td>STEPHAN Claude</td>
<td>n_TOF-ND-ADS</td>
<td>IPN-INP3 Orsay F-91046 Orsay Cedex</td>
</tr>
<tr>
<td>TITARENKO Yuri</td>
<td>ISTC - 2002</td>
<td>Head of Laboratory of Fundamental Nuclear Physics Research Institute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for Theoretical & Experimental Physics B.Chernushkin'skaya 25, 117218</td>
</tr>
<tr>
<td>VLACHOUDIS Vasilis</td>
<td>n_TOF-ND-ADS</td>
<td>CERN Div. SL CH-1211 Geneva 23</td>
</tr>
<tr>
<td>VOSS Friedrich</td>
<td>n_TOF-ND-ADS</td>
<td>H. von Helmholtz Platz 1 D-76344 Eggenstein</td>
</tr>
<tr>
<td>WENDLER Helmut</td>
<td>n_TOF_ND ADS</td>
<td>EP Division CERN CH-1211 Geneva 23</td>
</tr>
<tr>
<td>YAVSHITS Sergey</td>
<td>ISTC 1309</td>
<td>V.G. Khlopin Radium Institute 2nd Murinsky, 28 194021 St. Petersburg</td>
</tr>
<tr>
<td>ZANINI A</td>
<td>n_TOF_ND ADS</td>
<td>EP Division CERN CH-1211 Geneva 23</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY (Short Minutes)

Extract from Ved Bhatnagar’s Mission report (internal)

The meeting proceeded with brief presentations of the three projects: HINDAS, n_TOF_ND_ADS and MUSE. In each case, the co-ordinators briefly outlined the objectives and scope of the work to be carried out in their projects followed by presentations made by work package leaders on the tasks that they are responsible for. Presentations were also made by 5 ISTC projects in this area including the one from Nuclear Data Centre at NEA. The aim of the discussion during and after the presentations was to highlight the issues that are of importance for nuclear data needs for an ADS and in particular the ones that are not being addressed in the presently running FP5 projects.

The main points of the discussion can be summarised as follows (Partially based on the slide that Noulis Pavlopoulos presented in the discussion)

- The Commission’s initiative of clustering of related FP5 projects and facilitating exchange of information was highly appreciated. It was more so for the BASTRA cluster as not only the FP5 projects but also the ISTC related projects and OECD/NEA participation made the meeting more valuable.

- The nuclear (cross section) data bank at NEA/OECD is dealing with all kinds of cross section data, for all kinds of isotopes, in all energy ranges and for all kinds of applications. This has lead to a mammoth job which is becoming somewhat unwieldy and puts people off.

- It was suggested that the BASTRA cluster focus on the specific needs of nuclear cross section data for Accelerator Driven Systems for P&T. This implies reiterating (some information is already available from NEA) and listing the (Z,A) of the isotopes, nuclear reaction mechanisms and the energy range for which this data is required.

- There is a need to review and take stock of the situation of the data that already exist, the data that is being acquired and planned during the present FP5 and other projects on nuclear data. This would culminate in defining properly the future needs and efforts required in this direction. A sub group is proposed to be set up to work it out and for reporting (see below).

- It was suggested that the input data should have to be filtered by a quality control system (or criteria) before it is accepted for dissemination via the Nuclear Data for ADS (NUDADS) databank (name coined by myself!) possibly managed by NEA/OECD. The quality control parameters should be defined and may include ∆E/E, precision, completeness parameters etc.

- There should be more complete horizontal activities relating to interactions between authors of different theoretical models including transport codes so that they can sort out the reasons for discrepancies among different evaluations that are
accepted in the dedicated ADS database. In this context, source codes should be made available to other with due care of IPRs.

- There should be collaborative efforts so that specialists in certain areas or those implementing specialised techniques may also perform tests or measurements on samples coming from other institutions.

- Efforts should be made via financing of the fellowships such as Marie Curie or others so that young scientists are attracted to the field of nuclear data evaluation as veteran scientists become unavailable through natural wastage.

- It is proposed to establish several subgroups (2 or 3 persons each) which will report back to the cluster chairman on certain specific topics such as: (a) ADS designers’ requirements for the nuclear data, (b) Sensitivity studies on nuclear cross section data, (c) Overlap of work being done at FP5 and ISTC projects in nuclear data, (d) Theoretical models etc.

The next meeting of the cluster is informally proposed (to be confirmed) to take place in Uppsala, Sweden on 13/14 September 2002 together with the progress meeting of HINDAS project.
BASIC STUDIES on TRANS_MUTATION

BASTRA Cluster Meeting

V.P. BHATNAGAR
Nuclear Fission and Radiation Protection
Unit J.4, DG Research
European Commission
Brussels
e-mail: Ved.Bhatnagar@cec.eu.int
Clustering of P&T Projects

- EC is organising several clusters of complementary FP5 P&T projects to maximise European added value.

- The clusters are expected to optimise:
 - Scientific Networking
 - Coordination
 - Exchange of information
 - Monitoring
 - Exploitation and
 - Dissemination activities
Table 1. Clusters for the Funded FP5 Projects on Partitioning and Transmutation

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Project Title</th>
<th>Start Date</th>
<th>Duration</th>
<th>EC Budget (M?)</th>
<th>Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTITIONING (Cluster PARTITION)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYROREP</td>
<td>Pyro-metallurgical Processing Research Programme</td>
<td>1/9/2000</td>
<td>36 months</td>
<td>1.5</td>
<td>Mr H. Boussier CEA, (F)</td>
</tr>
<tr>
<td>PARTNEW</td>
<td>New Solvent Extraction Processes for Minor Actinides</td>
<td>1/9/2000</td>
<td>36</td>
<td>2.2</td>
<td>C. Madic CEA (F)</td>
</tr>
<tr>
<td>CALIXPART</td>
<td>Selective Extraction of Minor Actinides from High Activity Liquid Waste by Organized matrices</td>
<td>1/10/2000</td>
<td>36</td>
<td>1.3</td>
<td>J-F. Dozol CEA (F)</td>
</tr>
<tr>
<td>TRANSMUTATION : BASIC STUDIES (Cluster BASTRA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSE</td>
<td>The MUSE experiments for sub-critical neutronics validation</td>
<td>1/10/2000</td>
<td>36</td>
<td>2.0</td>
<td>Mr R. Soule CEA (F)</td>
</tr>
<tr>
<td>HINDAS</td>
<td>High and intermediate energy nuclear data for accelerator driven systems</td>
<td>1/9/2000</td>
<td>36</td>
<td>2.1</td>
<td>Mr J-P. Meulders UCL (B)</td>
</tr>
<tr>
<td>N_TOF_ND_ADS</td>
<td>ADS nuclear data</td>
<td>1/11/2000</td>
<td>36</td>
<td>2.4</td>
<td>Mr P. Pavlopoulos CERN (CH)</td>
</tr>
<tr>
<td>TRANSMUTATION : TECHNOLOGICAL SUPPORT (Cluster TESTRA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPIRE</td>
<td>Irradiation effects in Martensitic Steels under neutron and proton mixed spectrum</td>
<td>1/8/2000</td>
<td>48</td>
<td>2.3</td>
<td>Mr J-L. Boutard CEA (F)</td>
</tr>
<tr>
<td>TECLA</td>
<td>Technologies, Materials and Thermal Hydraulics for Lead alloys</td>
<td>1/9/2000</td>
<td>36</td>
<td>2.5</td>
<td>Mr G. Benamati ENEA (I)</td>
</tr>
<tr>
<td>MEGAPIE-TEST</td>
<td>Megawatt Pilot Experiment -Test</td>
<td>1/11/2001</td>
<td>36</td>
<td>2.4</td>
<td>Mr J. Knebel FZK (D)</td>
</tr>
<tr>
<td>FUELS (Cluster FUETRA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFIRM</td>
<td>Uranium free fuels for ADS: Collaboration on oxide and nitride fuel irradiation and modeling</td>
<td>1/9/2000</td>
<td>48</td>
<td>1.0</td>
<td>Mr J. Wallenius KTH (S)</td>
</tr>
<tr>
<td>THORIUM CYCLE</td>
<td>Development steps for PWR and ADS applications</td>
<td>1/10/2000</td>
<td>48</td>
<td>1.2</td>
<td>Mr. R. Schram NRG (NL)</td>
</tr>
<tr>
<td>FUTURE</td>
<td>Fuels for Transmutation of Transuranium Elements</td>
<td>1/12/2001</td>
<td>36</td>
<td>1.7</td>
<td>Ms. S. Pillon CEA (F)</td>
</tr>
</tbody>
</table>
Aims of Cluster Meeting

- Information Exchange of related projects
- Improve and complement the Work programme within the overall constraints of the projects
- Discuss the needs of nuclear data and sub-critical neutronic studies for an ADS
- Help in preparing the future areas of basic studies for ADS
- Help in Organizing consortiums so that they can prepare possible proposals for FP6
BASTRA Cluster

- An opportunity to invite related ADS nuclear data actors to participate in the cluster meeting:
 - EURATOM 5th Framework Programme Projects
 - International Science and Technology Centre (ISTC) Moscow
 - Nuclear Energy Agency (NEA), Paris of Organisation for Economic Co-operation and Development (OECD)
BASTRA Cluster Projects

- EC FP5 Projects
 - **HINDAS**: High and Intermediate Energy Nuclear Data for Accelerator Driven Systems: J.-P. Meulders et al., UCL, Louvain-la-Neuve, Belgium
 - **N_TOF_ND_ADS**: Time-of-Flight ADS nuclear data: P. Pavlopoulos et al., CERN, Geneva, Switzerland
 - **MUSE**: The MUSE Experiments for Sub-critical Neutronics Validation: R. Soule et al., CEA, Cadarache, France
ISTC Projects

- **#B70**: Experimental and Theoretical Research on Transmutation of Long-Lived Fission Products and Minor Actinides in a Subcritical Assembly Driven by a Neutron Generator: S. Chigrinov et al., Radiation Physics and Chemistry Problems Institute, Minsk-Sosny, Belarus

- **#1309**: Measurements and Comparison of p- and n-induced Cross sections of Lead and Neighboring Nuclei in the 20-200 MeV Region: S. Yavshits et al., V.G. Khlopin Radium Institute, St Petersburg, Russia

- **#1372**: Complex Radiochemical and Activation Analysis of Long Life Nuclear Waste Transmutation in Fast Reactors and in Beams of High Energy Accelerators: Y. Shubin et al., State Scientific Centre of RF, Institute of Physics and Power Engineering, Obninsk, Russia
Other Projects

◆ ISTC Projects (continued)

- #1971 : Neutron Induced Fission Cross section of PU240, AM 243 and W in the range of 1-200 MeV : A. Laptev et al., Petersburg Nuclear Physics Institute Gatchina, Leningrad District, Russia

- #2002 : Experimental and Theoretical Studies of the yields of Residual Products in Thin Pb and Bi Targets by 40-2600 MeV Protons: Y. Titarenko et al., Institute of Theoretcial and Experimental Physics (ITEP), Moscow, Russia
Projects on ADvanced Options for Partitioning and Transmutation (ADOPT)

PARTITIONING (5 MEuro)
- PYROREP
- PARTNEW
- CALIXPART

TRANSMUTATION (6 MEuro)
- Basic Studies:
 - MUSE
 - HINDAS
 - N-TOF_ND_ADS

TRANSMUTATION (6.5 MEuro)
- Preliminary Design Studies for an Experimental ADS:
 - PDS-XADS

TRANSMUTATION (7.2 MEuro)
- Technological Support:
 - SPIRE
 - TECLA
 - MEGAPIE - TEST

TRANSMUTATION (3.9 MEuro)
- Fuels:
 - CONFIRM
 - THORIUM CYCLE
 - FUTURE
High and Intermediate energy Nuclear Data for Accelerator-driven Systems
HINDAS

List of participants

• Belgium
 – Université Catholique de Louvain (UCL) Louvain-la-Neuve (Jean-Pierre Meulders)
 – Université de Liège (Ulg) (Joseph Cugnon)

• France
 – Laboratoire de Physique Subatomique et des Technologies Associées (SUBATECH) Nantes (Philippe Eudes)
 – Laboratoire de Physique corpusculaire de Caen (LPC-Caen) (Jean-Francois Lecolley)
 – CEA -SACLAY (Sylvie Leray)
 – CEA- Centre d ’Etudes de Bruyères-le-Châtel (Olivier Bersillon)

• Germany
 – Universitaet Hannover - Zentrum für Strahlenschutz und Radioekologie (ZSR) (Rolf Michel)
 – Physikalisch-Technische Bundenstalt- Department « Ionising Radiation » (PTB) (Helmut Schuhmacher)
 – Forschungszentrum Jülich GmbH - Institut für Kernphysik (FZJ-IKP) (Detlef Filges)
 – Gesellschaft für Schwerionenforshung - Kernphysik II (GSI) (Karl-Heinz Schmidt)

• Netherlands
 – Rijksuniversiteit Groningen - Kernfysisch Versneller Instituut (KVI) (Hans Beijers)
 – Nuclear Research and consultancy Group (NRG Petten) (Arjan Koning)

• Sweden
 – Uppsala Universitet - Department of Neutron Research (UU) (Nils Olsson- Elisabet Ramstrom)

• Spain
 – Universidade de Santiago de Compostela (Jose Benlliure)

• Switzerland
 – ETH Zürich - Institute of Particle Physics (Hans-Arno Synal)
 – Paul Scherrer Institut (Regin Weinreich)
Scientific Objectives

- Most complete set of new experimental data between 20 MeV and 2 GeV

- Selected targets:
 - Fe as shielding material
 - Pb as target material
 - U as element representative of the actinides

- Improvement and benchmarking of existing nuclear models or development of new codes
List of European facilities and laboratories

- **Experiments at energies below 200 MeV**
 - Institut de physique nucléaire, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium (CYCLONE cyclotron)
 - The Svedberg Laboratory, Uppsala Universitet, Uppsala, Sweden (cyclotron)
 - Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen - Groningen, The Netherlands (cyclotron)
 - Paul Scherrer Institut, Villingen, Switzerland (cyclotron)

 users
 - Laboratoire de Physique Subatomique et des Technologies Associées (SUBATECH) Nantes, France.
 - Laboratoire de Physique corpusculaire de Caen (LPC-Caen), Caen, France.
 - Zentrum für Strahlenschutz und Radioekologie (ZSR), Universitaet Hannover, Hannover, Germany.
 - Physikalisch-Technische Bundesanstalt - Department « Ionising Radiation » (PTB) Braunschweig, Germany.
 - ETH Zürich - Institute of Particle Physics, Zürich, Switzerland

- **Experiments at energies above 200 MeV**
 - Gesellschaft für Schwerionenforshung, Kernphysik II, GSI Darmstadt, Germany (heavy ion synchrotron)
 - Institut für Kernphysik, Forschungszentrum Jülich GmbH - FZJ Jülich, Germany (Storage and cooler synchrotron)

 users
 - CEA -SACLAY, Saclay, France.
 - Universidade de Santiago de Compostela, Santiago de Compostela, Spain.

- **Theory**
 - Institut de Physique, Université de Liège (Ulg), Liège, Belgium.
 - Nuclear Research and consultancy Group (NRG Petten), Petten, The Netherlands
 - CEA- Centre d ’Etudes de Bruyères-le-Châtel, Bruyères-le-Châtel, France
 - Department of Neutron Research, Uppsala Universitet, Nyköping, Sweden
HINDAS

Presentation

• Experiments at energies between 20 and 200 MeV
 Nils Olsson, UU - Uppsala

• Experiments at energies above 200 MeV
 Karl Heinz Schmidt, GSI - Darmstadt

• Theoretical studies
 Joseph Cugnon, ULg - Liège
HINDAS
Experimental Programme from 20 MeV to 200 MeV

N. OLSON
HINDAS – WP 1, 2 and 3
Measurements between 20 and 200 MeV

- Few, selected nuclei (Fe, Pb, U)
- As many reactions as possible
- Analysis – Improved models (WP 7)
- Data base (WP 7)
Workpackages

WP 1: n- or p-induced light charged-particle production cross sections (lead: University of Nantes)
Experiments: UCL, UU, KVI

WP 2: n- or p-induced neutron production cross sections
(lead: University of Uppsala)
Experiments: UCL, UU

WP 3: n- or p-induced residual nuclide production and production of long-lived radionuclides (lead:
University of Hannover) Experiments: PSI, UCL, UU + others
Experimental facilities

- **UCL**: Protons, 20 – 70 MeV
 Neutrons (quasimonoenergetic), 20 – 70 MeV
- **UU/TSL**: Protons, 20 – 180 MeV
 Neutrons (quasimonoenergetic), 20 – 180 MeV
- **KVI**: Protons, 20 – 190 MeV
- **PSI**: Protons, 45 – 70 MeV
- **ETH Zürich**: EN Tandem for AMS
Experimental techniques

- Charged particle production cross sections:
 1. Particle telescopes (e.g., MEDLEY)
 2. Particle tracking (e.g., SCANDAL)

- Neutron production cross sections:
 1. Time-of-flight
 2. Conversion to recoil protons + proton tracking

- Residual production:
 1. Activity spectroscopy
 2. Chemical separation + accelerator mass spectroscopy
MEDLEY facility
MEDLEY telescope
SCANDAL facility
Preliminary results....
Abstract: Nuclear data of spallation reactions above 200 MeV, needed for the design of the ADS, are scarce. Experiments with proton beams in the appropriate energy regime have been made at SATURNE (Saclay) and COSY (Jülich) to obtain detailed data on light charged-particle and neutron production. Nuclide identification in-flight of heavy residues requires the application of inverse kinematics and a powerful spectrometer. For this purpose, the GSI facility has been used. In addition, this experiment provides the recoil energies of the heavy residues. The data on systematic investigations of a few representative systems, which are already partly available, put important constraints on the models to be improved or developed for this energy regime. A new-generation experiment is in preparation which intends to determine the light-particle production in coincidence with the production of heavy residues. This technique will allow to better determine the characteristics of the nuclear-collision phase and of the deexcitation phase independently.
3 Work packages:
(dedicated to specific reaction channels)

- **Light charged particles** (Jülich, Saclay)
- **Neutrons** (Saclay, Bruyères, Jülich, Cean)
- **Heavy residues** (GSI, Santiago, Saclay)

Aim:
Complete understanding and modeling of spallation reactions at 200 - 2000 A MeV.

Program:
Measurements for a few targets (Fe, Pb, and U), covering all reaction channels.
Experiments performed at best-equipped European facilities.

COSY, Jülich (proton beam)

GSI, Darmstadt (heavy-ion beam, ≈ 1AGeV)
Two different approaches

Normal kinematics
• Light particles emitted in all directions.
• Heavy residues stick in the target.

Inverse kinematics
• All reaction products in forward direction.
The BNB - BSiB Detector

A 4π detector for neutrons and charged-particles
Production of He by 0.8 GeV protons

Large discrepancies between theories (■, ○) and experiments (△, ○, □, etc.).

Double-differential neutron cross sections (1.2 GeV protons on lead)

1200 MeV p+Pb, INCL4 + KHSV3p

The GSI Fragment Separator

In-flight identification of heavy residues.

Filling:
H₂: 90 mg/cm²

Windows:
Ti: 36 mg/cm²

The liquid-hydrogen target (CEA Saclay).
Identification pattern \((^{208}\text{Pb} + ^{1}\text{H})\)

(a) Identification of ionic charge states
(b) Separation in A and Z
Kinematics \(^{(208}\text{Pb} + \text{H})\)

Velocity distribution of every nuclide

- Recoil energy
- Production mechanism

Sideward emission suppressed.
Production cross sections

$^{208}\text{Pb (1 A GeV)} + \text{proton}$

For the first time:
Full coverage of all nuclides produced by fragmentation and fission.
(Uncertainties ≤ 10% in most cases.)

Production cross sections

$^{208}\text{Pb (1 A GeV) + proton}$

(Some isotopic sequences)

Production cross sections

$^{208}\text{Pb} \ (1 \ A \ \text{GeV}) + \text{deuteron}$

T. Enqvist et al., Nucl. Phys. A, in print

Data evaluation in progress for:

$^{238}\text{U} \ (1 \ A \ \text{GeV}) + \text{proton}$

$^{238}\text{U} \ (1 \ A \ \text{GeV}) + \text{deuteron}$
Recoil velocities

Average Longitudinal Momentum

Average Momentum Width

Goldhaber model
Preparation of 2nd generation experiment

Measurement of residues in coincidence with neutrons and light charged particles
(Saclay, GSI, München, Orsay, Bordeaux, Santiago)
Summary

Experimental goal:
Full coverage of yields and velocities of
• light charged particles
• neutrons
• heavy residues
for a few systems.

Status:
• Most complete set of relevant data measured.
• First results published.
• 2^{nd} generation experiment in preparation.

New information on critical topics:
• Energy deposit in INC phase.
• Thermal instability of nuclei.
• Barriers of charged particles.
• Dissipative hindrance of fission.

An excellent basis for improved nuclear models.
Theoretical program of the HINDAS project*

J. Cugnon, University of Liege†

10th December 2001

1 Introduction and general presentation

2 From 0 to 200 MeV

3 From 200 MeV to 2 GeV

4 Conclusion

*BASTRA meeting, CERN, Dec 5, 2001
†J.Cugnon@ulg.ac.be
1. Introduction

- **From 0 to 200 MeV (WP7)**
 - Regime: Quantum scattering
 - *TALYS*: optical model, direct, pre-equilibrium, fission and statistical models; predicts all reaction cross-sections; results in ENDF
 - TUL model to predict multi-direct reactions
 - DYWAN: quasi-particle model in a wavelet basis

- **From 200 MeV to 2 GeV (WP8)**
 - Regime: Quasi-classical multiple scattering
 - INCL4 Liège INC model +KHS evaporation model; predictions of all reaction cross-sections; direct implementation in high-energy transport codes

- **Confrontation to high quality data**

- **Contribution to elaboration of transport codes** (HERMES, LAHET, MCNPX)

- **Quantities for ADS**: activation, radiation damage, gas production,…
2. 0 \rightarrow 200 MeV

10th December 2001

1 TALYS
 ▶ Developed by NRG-Petten and CEA-Bruyeres-le-Chatel
 ▶ A continuous smooth description of the reaction mechanisms (ALICE, GNASH, ...)
 ▶ Direct, compound, preequilibrium, fission
 ▶ Automatic reference to nuclear data
 ▶ Or various phenomenological models. Ex: Gilbert-Cameron or HFB microscopic level density

2 Fission model
 ▶ T-dependent Brosa model
 ▶ Hill-Wheeler probability on effective barrier
 ▶ Fitted on recent data

*BASTRA meeting, CERN, Dec 5, 2001
WP7: Nuclear data libraries and related theory

- Integration of all nuclear models for few keV < E < 200 MeV in one nuclear reaction code: TALYS.

- TALYS predicts
 - Total and partial cross sections, energy spectra, angular distributions, double-differential spectra and an exact modelling of exclusive cross sections and spectra.
 - Excitation functions for residual nuclide production, including isomeric cross sections.
 - Fission and gamma production.

- Theoretical analysis of all HINDAS measurements below 200 MeV.

- Optical model development.

- New proton and neutron data libraries for selected materials up to 200 MeV.
TALYS: CALCULATIONAL SCHEME

Input:
- Keywords, eg:
 - Projectile p
 - Element Fe
 - Mass 56
 - Energy 22.

Output:
- File ‘output’ defined by keywords
- Dedicated files with spectra, ...
 - GUI

ENDF:
- * transport libs
- * activation libs

Optical Model:
- Phenomenology local / global
- Microscopic

Direct reaction:
- Spherical OM
- DWBA
- Rotational CC
- Giant resonances
- (Semi-)direct γ
- Vibrational CC
- Exchange
- Transfer

Preequilibrium:
- Exciton model
 - 1 + 2-component
- p-h LD phenom.
- Kalbach systematics:
 - angular distribution
 - cluster emission
 - surface effects
- γ-ray emission
- MSD/MSC

Nucl. Structure:
- Abundancies
- Discrete levels
- Deformations
- Masses
- Level density par.
- Resonance par.
- Fission barrier par.
- Microscopic LD
- Prescission shapes

Compound:
- Width fluctuations
 - Moldauer
 - GOE triple integr.
 - HRTW
- Hauser-Feshbach
- Fission competition
- γ-ray emission
- GC+ Ignatyuk
- Superfluid model

Multiple emission:
- Exciton (any order)
- Hauser-Feshbach
- Fission competition
- All flux depleted
- γ-ray cascade
- Exclusive channels
- MSD (any order)
- Weisskopf-Ewing

oops possible over:
- Incident energies
- Natural isotopes
Fission at Intermediate Energies

- Competition with particle emission (multi-chance fission):

\[\sigma_F(A, Z, E^*) \]

ALICE-91

- Change of fission fragment properties with \(E^* \):

\[Y(A_{FF}, A, Z, E^*) \]

T-dependent Brosa model

- Predictions of mass yields:

\[Y(A_{FF}) = \sum_{A,Z,E^*} \sigma_F(A, Z, E^*) Y(A_{FF}, A, Z, E^*) \]
Pre-neutron emission mass yields: subactinides

ALICE-91+BROSA II

Pre-neutron emission mass yields: n + 238U

3. 200 MeV \rightarrow 2GeV

10th December 2001

1 INCL4
 ▶ Improved version of the Liege INC model
 ▶ A quasi-classical multiple scattering model
 ▶ Improvements: smooth surface, consistent Pauli blocking, delta dynamics, light incident ions, angular momentum,...
 ▶ Time structure

2 KHS evaporation model:
 ▶ Weisskopf model for n, p, alpha evaporation with barriers fitted on isotopic distributions, Gilbert-Cameron-Ignatyuk level density (→ A/11 at high excitation energy)
 ▶ Fission model: Hill-Wheeler formula, l- and T-dependent barriers, mass splitting based on energy landscape, viscosity effects through a fission delay recipe

*BASTRA meeting, CERN, Dec 5, 2001
$d^2\sigma/d\Omega dT_n$ (mb/sr.MeV)

$p(1200 \text{ MeV}) + W$

T_n (MeV)
4. Conclusion*

10th December 2001

1 Theoretical work is well in progress: it will be implemented in transport codes before the end of HINDAS

2 Did we reach the required precision for ADS applications? Sensitivity studies are necessary

3 Contributions are from many people in HINDAS, more particularly from:
 ▶ WP7: A. Koning, E. Randstrom, F. Sebille
 ▶ WP8: J. Cugnon, S. Leray, A. Boudard, C. Volant, K.-H. Schmidt, F. Goldenbaum, D. Filip

*BASTRA meeting, CERN, Dec 5, 2001
The n_TOF Collaboration

The n_TOF-ND-ADS project
n_TOF Collaboration

♦ Austria
 • Atominstitut der österreichischen Universitäten, Wien
 • Institut Isotopenforschung & Kernphysik, Univ. Wien
 • Fachhochschule Wr. Neustadt

♦ Bulgaria
 • State Energy and Energy Resources Agency, Sofia,
 • Institute Nuclear Res. & Energy, Bulgarian Academy
 • Central Lab. Mechatronics & Instr., Bulgarian Academy

♦ CERN
 • SL Division, Geneva

♦ France
 • IN2P3, CENBG, Bordeaux
 • IN2P3, IPN, Orsay
 • IN2P3, IReS, Strasbourg
 • Commissariat à l’Energie Atomique/DSM/DAPNIA/SPhN

♦ Germany
 • FZK Karlsruhe GmbH, Institut fur Kernphysik

♦ Greece, Astro-Particle Consortium
 • Nuclear Physics Lab. of the Univ. of Athens
 • Nuclear Physics Dept. of the Technical Univ. of Athens
 • Nuclear Physics Institute, NCSR “Demokritos”, Athens
 • Nuclear Physics Lab. of the Univ. of Ioannina
 • Nuclear Physics Lab. of the Univ. of Thessaloniki
 • Nuclear Physics Dept. of the Univ. of Thrace

♦ Italy
 • ENEA, Applied Physics Division
 • Laboratori Nazionali di Legnaro
 • Instituto Nazionale di Fisica Nuclear-Bari
 • Instituto Nazionale di Fisica Nuclear-Trieste
 • Universita degli Studi Pavia

♦ EC-JRC

♦ Poland
 • University of Lodz

♦ Portugal
 • LIP-Departamento de Fisica da Universidade de Coimbra
n_TOF Collaboration..... continue

♦ Russia
 • JINR, Frank Laboratory of Neutron Physics, Dubna
 • Institute of Physics and Power Engineering, Obninsk

♦ Spain
 • CIEMAT
 • CSIC – Univ. Valencia
 • Universidad Politecnica de Madrid
 • Universidad de Sevilla
 • Universidade de Santiago de Compostela
 • Universitat Politecnica de Catalunya

♦ Sweden
 • Kungliga Tekniska Hogskolan, Physics Department

♦ Switzerland
 • Department of Physics and Astronomy, Univ. of Basel

♦ The Netherlands
 • Delft Univ. Technology, Interfaculty Reactor Institute

♦ USA
 • Los Alamos National Laboratory
 • Oak Ridge National Laboratory, Physics Division
 • University of Notre Dame
The **n_TOF Collaboration** aims at the

- **consistent and cost effective production,**
- **formal evaluation** and
- **dissemination**

- according to international standard ways -

of **neutron induced reaction cross sections** in the

Field of Nuclear Technology & Dosimetry.
The CERN Time of Flight Facility

- 600 neutrons / 20 GeV proton
- $4 \times 0.7 \times 10^{13}$ p $\gg \gg 1.7 \times 10^{16}$ n
- Every 2.4 s
- 0.7×10^{16} n/s

05 December 2001
P. Pavlopoulos, - BASTRA Cluster Meeting, CERN, Switzerland
Cupboard for the Inflammable gases

Gas Alarm units

Gas lines toward the n_TOF Exper. Area
The Experimental Area

- Constructed according to the planned design ([CERN/INTC 2000-018]) and with the EP & TIS safety and radioprotection authorisation!

- Aluminum honeycomb “false floor” for reducing neutron background, carbon fibre and “minimum mass” detector supports.

- Front-End and trigger electronics in the detector vicinity and “Gigabit Switch” optical data transfer lines to the “Control Room”.

- Gas regulation systems and specific cupboard for operating inflammable gases in the detector vicinity.

- The “Reaction Chamber” and the “Neutron Escape Line”.

05 December 2001

P. Pavlopoulos, - BASTRA Cluster Meeting, CERN, Switzerland
OBJECTIVES of the “n_TOF-ND-ADS”

♦ Measure with a precision of few % the appropriate capture, fission for elements with relatively well known cross-sections \([^{197}\text{Au},^{24-26}\text{Mg},^{207}\text{Pb},^{56}\text{Fe},^{235}\text{U}\text{ and }^{238}\text{U}]\) though their knowledge at high energies is still limited.

♦ Determine with a precision of few % the capture cross sections for the isotopes, relevant to the Th-cycle: \(^{232}\text{Th},^{231}\text{Pa},^{233}\text{U},^{234}\text{U},^{236}\text{U}\).

♦ Determine with a precision of few % the capture cross sections for the transuranic isotopes: \(^{237}\text{Np},^{240}\text{Pu},^{242}\text{Pu},^{241}\text{Am},^{243}\text{Am},^{245}\text{Cm}\).

♦ Determine with a precision of few % the capture cross sections of specific LLFF as \(^{151}\text{Sm},^{99}\text{Tc},^{129}\text{I},^{79}\text{Se},^{93}\text{Zr}\) and further on \(^{205,206,207}\text{Pb}\text{ and }^{209}\text{Bi}\).
♦ Determine with a precision of few % the **fission cross sections** of: 232Th, 231Pa, $^{233-236}$U, 237Np, 241Am, 243Am, 244Cm and 245Cm.

♦ Precise measurement of **(n,xn) cross sections** using also activation techniques of: 233U, 232Th, 231Pa, 239Pu, 241Pu, 241Am, 243Am, 237Np and 207Pb.

♦ Measure the **total cross sections** of: 237Np, 129I, 239Pu and 240Pu.

♦ Measure capture and fission cross sections at given neutron energies with mono-energetic beams of the isotopes: 232Th, 233U, 237Np, 241,243Am and 99Tc, 129I, 79Se, 151Sm, 137Cs.

- **GELINA Time-Of-Flight at JRC-IRMM/Geel**
- **Tandem (23 MeV) accelerator at NCSR “DEMOKRITOS” (Athens)**
- **Van de Graff accelerators at INP (Lisboa), FZK (Karlsruhe) and CENBG (Bordeaux)**
Neutron capture on light elements required in the analysis of stellar grains (Example: the Mg isotopes ; P124)

Unstable isotopes involved in the s-process branchings to understand and analyze the physical conditions of stellar environment such as temperature, density, neutron-flux available for the nucleosynthesis (Example: ^{151}Sm ; P124)

Special cases which address to fundamental and open questions in nuclear astrophysics such as the age of the universe (Example: the Re/Os nuclear cosmochronometer ; P125)

The capture cross sections for isotopes ^{204}Pb, ^{206}Pb, ^{207}Pb, ^{208}Pb, ^{209}Bi (P142).

The series of (n,α) cross section measurements on intermediate to heavy mass targets provide valuable constraints on (γ,α) and (α,p) reaction rates for studies of the nucleosynthesis occurring during the novae and supernovae explosion. (Example: the α-particle width for the ^{64}Zn, ^{67}Zn, ^{95}Mo and ^{99}Ru n-resonances ; Pxxx)

The isotopes ^{90}Zr, ^{91}Zr, ^{92}Zr, ^{94}Zr, ^{96}Zr.

With the nuclear data to be made available as DataBases, we can expect significant progress in the general understanding of the neutron capture nucleosynthesis.
Our Collaboration entangles competence and experience in:

- **Experimental Physics**

 High performance detectors and data acquisition

- **Theoretical Physics**

 Evaluation and Modeling of Cross Sections

- **Computational Physics, Data Bases and Visualization**

 State-of-the-art computer engineering
Experimental Methodology

♦ **Monitors**
 - MicroMegas Chambers
 - Set of Si-detectors
 - BF$_3$ long-counters

♦ **Capture Cross Sections**
 - Set of C$_6$D$_6$ Detectors.
 - Total Absorption Calorimeter
 # 4π crystal calorimeter (e.g. FZK Ball) of BaF$_2$ or CeF$_3$
 # Liquid Nobel Gas

♦ **Fission Cross Sections**
 - Parallel Platte Avalanche Chambers
 - Multi-plate Coaxial Ionisation Chamber

♦ **(n,xn) Cross Sections**
 - HPGe detectors
 - Activation analysis
The Silicon Fluence Monitors

- Monitoring of the fluence as function of the neutron energy, but **NOT** the knowledge of the absolute value, since the determination of the cross section will be referenced to a “standard” isotope!

 - The $^6\text{Li}(n,\alpha)^3\text{H}$ cross section is a “standard” in the E_n range from **thermal** to **1 MeV**.
 - Measurement of the $^6\text{Li}(n,\alpha)^3\text{H}$ reactions with **four 300 µm Si detectors** in vacuum.
 - A 3 cm diameter ^6LiF sample of 500 µg/cm² on a substrate of 1.5 µm mylar.
 - The MC calculated Ω and the known $\sigma[^6\text{Li}(n,\alpha)^3\text{H}] \Rightarrow \text{Neutron Fluence over beam surface}$.
 - Dedicated calibration of the sample thickness and homogeneity of the sample will allow a precision of a few percent, as compared to the present 10% (MC).
 - Counting rates \propto neutron fluence \Rightarrow counting rates monitor the neutron beam stability.

Graphs and Data:

- **Graph 1:**
 - $dN / d\log(E)$ vs. Neutron Energy [eV].
 - 6×10^5 n / bunch.

- **Graph 2:**
 - Counts per bunch (4 Silicon).
The "MicroMegas" Detector

♦ Fast detector with good time and spatial resolution.
♦ Filled with Helium is insensitive to the "γ-flash".
♦ Equipped with 6Li ⇒ Beam profile and homogeneity, but also monitors the beam stability.
♦ Filled with H$_2$-rich gas, increased sensitivity to higher energies (Efficiency should be better understood).
♦ First successful operation as position sensitive "Neutron Counter" ⇒ "S. Andriamonje et al., NIM 2001, in print".
C$_6$D$_6$ Detectors
Improvement by the additional shielding

![Graph showing improvement by the additional shielding](image)

- 0.1 mm Au May 2001
- 0.1 mm Au Nov. 2001
- 0.1 mm simulation
Total Absorption Calorimeter

- LXe/Ar matrix of 7 2" PMTs
- Al/MgF2 mirrors
- 0.1 mm SS/carbon fibre walls
- Carbon fibre honeycomb structure
- Vacuum/LN2 condensor
- Xe/Ar x 4

Diameter: 15 cm
Fission detectors

12 samples

50-100 samples

0.8 mm
The PPAC Fission Detectors

- A set of 5 PPAC equipped with ^{235}U, ^{238}U and ^{209}Bi fission samples covered the neutron energy range from thermal to 200 MeV.
- The achieved energy resolution is excellent, but needs to be confirmed at higher energies (Doppler broadening less important). The peak-to-valley seems to be larger in the n_TOF data, indicating the expected good energy resolution.

The measurements covers 8 orders of magnitude, proofing the power of the n_TOF method, using spallation neutrons from high-energy proton beam.
Nuclear Data Evaluation
♦ Take profit from the CERN Software Tools, i.e. ROOT.

♦ Compatible with the international tools of NEA/OCDE & IAAE.

♦ Goal is the n_TOF DataBase, co-operation with NEA/OCDE & JEF.
Monte Carlo Simulation

Radial neutron beam profile distributions at the sample position

Beam of 4 cm radius
Beam of 2 cm radius
Data Acquisition System

- 60 channels of 1 GHz FADCs.
- Multiple Stream DAQ of 40-240 MB/s (comparable to LHC 100 MB/s).
- Developed by n_TOF Collaboration and French/Swiss Industry.
"γ Flash & relativistic particles

Amplitude (mV) vs Time (µs)

- C₆D₆
- Right side of Exp. Area
- Left side of Exp. Area
"γ Flash" & relativistic particles

Run: 1911 event: 1

FADC channel

Time [ns]

0 500 1'000 1'500 2'000 2'500 3'000 3'500 4'000

75 MeV 25 MeV 10 MeV

Run: 1772 event: 1

γ Flash & relativistic particles

Flash